## casaultb/azmpdata status:
##  (Package ver: 0.2019.0.9100) Up to date
##  (Data ver:2021-01-14 ) Up to date
##  azmpdata:: Indexing all available monthly azmpdata...
## 
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union

Introduction

The purpose of this vignette is to demonstrate how to plot data which is pulled from the azmpdata package. We show brief examples of various plotting methods including base plot, and ggplot2. We also review how to recreate default plots from the gslea package which has similar functionality to azmpdata but contains Gulf and Quebec region data products.

The Data

We will use sample data from the azmpdata package for each example. Data can be called using

df <- get('Derived_Annual_Stations')
head(df)
##   station year integrated_chlorophyll_0_100 integrated_nitrate_0_50
## 1     HL2 1999                     67.87150                 85.3821
## 2     HL2 2000                     52.27038                153.5603
## 3     HL2 2001                     68.29393                149.7280
## 4     HL2 2002                     47.71381                103.0353
## 5     HL2 2003                     96.58182                150.9685
## 6     HL2 2004                     66.68268                126.5663
##   integrated_nitrate_50_150 integrated_phosphate_0_50
## 1                  914.6475                  25.47386
## 2                 1052.4824                  30.74438
## 3                  852.9537                  37.94380
## 4                  986.5876                  31.48064
## 5                 1043.8373                  29.25722
## 6                  859.2595                  27.55872
##   integrated_phosphate_50_150 integrated_silicate_0_50
## 1                    95.37123                 133.7420
## 2                   106.72167                 188.2529
## 3                   115.91301                 165.8859
## 4                   112.68214                 112.0497
## 5                   105.77327                 178.2837
## 6                    99.75733                 159.4061
##   integrated_silicate_50_150 sea_surface_temperature_from_moorings
## 1                  1028.1987                                    NA
## 2                  1027.9558                                    NA
## 3                   848.0259                                    NA
## 4                   905.5085                                    NA
## 5                   972.7365                                    NA
## 6                   832.2479                                    NA
##   temperature_in_air cruiseNumber longitude latitude pressure temperature_0
## 1                 NA         <NA>        NA       NA       NA            NA
## 2                 NA         <NA>        NA       NA       NA            NA
## 3                 NA         <NA>        NA       NA       NA            NA
## 4                 NA         <NA>        NA       NA       NA            NA
## 5                 NA         <NA>        NA       NA       NA            NA
## 6                 NA         <NA>        NA       NA       NA            NA
##   temperature_90 integrated_sea_temperature_0_50 integrated_salinity_0_50
## 1             NA                              NA                       NA
## 2             NA                              NA                       NA
## 3             NA                              NA                       NA
## 4             NA                              NA                       NA
## 5             NA                              NA                       NA
## 6             NA                              NA                       NA
##   integrated_sigmaTheta_0_50
## 1                         NA
## 2                         NA
## 3                         NA
## 4                         NA
## 5                         NA
## 6                         NA

Base plot

Using base R to create plots can often be the simplest way for a novice to explore a dataset.

If we wanted to create a simple plot of a variable over time, it might look like this

plot(df$year, df$temperature_in_air, xlab = 'Year', ylab = 'temperature_in_air')

Obviously there are many more advanced plots that can be made using base plot but we leave these up to the individual users to explore.

ggplot2

Using ggplot2 can give great simple exploratory plots, using a different ‘grammar’.

If a user wanted to compare different variables over time, ggplot2 has functions which make this very simple.

p <- ggplot(data = df) +
  geom_line(aes(x = year, y = temperature_in_air, colour = 'air_temperature'), show.legend = TRUE) +
  geom_point(aes(x = year, y = sea_surface_temperature_from_moorings, colour = 'sea_surface_temperature_from_moorings'), show.legend = TRUE)+
  labs(y = 'degrees C' ) +
  scale_color_manual(name = "variables",
                     breaks = c('air_temperature', 'sea_surface_temperature_from_moorings'),
                     values = c('air_temperature' = 'red', 'sea_surface_temperature_from_moorings' = 'blue'))
  

print(p)
## Warning: Removed 4 row(s) containing missing values (geom_path).
## Warning: Removed 1030 rows containing missing values (geom_point).

The next two examples contain generic code that could be modified to plot any dataframe (of the same time scale).

Another common plotting task would be to plot the annual means of a given dataframe. This method is fairly generic and could be used for any annual dataset.

 df_data <- get('Derived_Annual_Broadscale') # get data
 variable <- 'temperature_at_sea_floor' # select variable to plot

  # check for metadata and seperate
  metanames <- c('year','area', 'section', 'station' )
  meta_df <- names(df_data)[names(df_data) %in% metanames]

  group <- meta_df[meta_df != 'year']

  df_data <- df_data %>%
    dplyr::select(., all_of(meta_df), all_of(variable) ) %>%
    dplyr::rename(., 'value' = all_of(variable) ) %>%
    dplyr::rename(., 'group' = all_of(group))

  # set x-axis
  x_limits <- c(min(df_data$year)-1, max(df_data$year)+1)
  x_breaks <- seq(x_limits[1], x_limits[2], by=1)
  x_labels <- x_breaks

  # set y-axis
  y_limits <- c(min(df_data$value, na.rm=T) - 0.1*mean(df_data$value, na.rm=T),
                max(df_data$value, na.rm=T) + 0.1*mean(df_data$value, na.rm=T))

  # plot data
  p <-  ggplot2::ggplot() +
    # plot data - line
    ggplot2::geom_line(data=df_data,
                       mapping=ggplot2::aes(x=year, y=value, col = group),
                        size=.5) +
    # plot data - dots
    ggplot2::geom_point(data=df_data,
                       mapping=ggplot2::aes(x=year, y=value, col = group),
                        size=1) +
    # set coordinates system and axes
    ggplot2::coord_cartesian() +
    ggplot2::scale_x_continuous(name="Year", limits=x_limits, breaks=x_breaks, labels=x_labels, expand=c(0,0)) +
    ggplot2::scale_y_continuous(name="", limits=y_limits, expand=c(0,0))

  # customize theme
  p <- p +
    ggplot2::theme_bw() +
    ggplot2::ggtitle(paste(group, variable, sep=" : " )) +
    ggplot2::theme(
      text=ggplot2::element_text(size=8),
      axis.text.x=ggplot2::element_text(colour="black", angle=90, hjust=0.5, vjust=0.5),
      plot.title=ggplot2::element_text(colour="black", hjust=0, vjust=0, size=8),
      panel.grid.major=ggplot2::element_blank(),
      panel.border=ggplot2::element_rect(size=0.25, colour="black"),
      plot.margin=grid::unit(c(0.1,0.1,0.1,0.1), "cm"))

print(p)
## Warning: Removed 277 row(s) containing missing values (geom_path).
## Warning: Removed 397 rows containing missing values (geom_point).

A user may also want to plot a timeseries. This method is also fairly generic and could be modified to plot any Occupations dataset.

  df_data <- get('Discrete_Occupations_Stations') # get data
  variable <- 'chlorophyll' # choose variable to plot
  

  # check for metadata
  metanames <- c('year', 'month', 'day', 'area', 'section', 'station' )
  meta_df <- names(df_data)[names(df_data) %in% metanames]

  group <- meta_df[!meta_df %in% c('year', 'month', 'day')]

  df_data <- df_data %>%
    dplyr::select(., all_of(meta_df), all_of(variable) ) %>%
    dplyr::rename(., 'value' = all_of(variable) ) %>%
    dplyr::rename(., 'group' = all_of(group)) #TODO some dataframes do not have groups!?


  # prepare data
  df_data <- df_data %>%
    tidyr::unite(date, year, month, day, sep="-", remove=F) %>%
    dplyr::mutate(year_dec=lubridate::decimal_date(lubridate::ymd(date))) %>%
    dplyr::select(year, year_dec, value, group)

  # set x-axis
  x_limits <- c(min(df_data$year), max(df_data$year)+1)
  x_breaks <- seq(x_limits[1]+.5, x_limits[2]-.5, by=1)
  x_labels <- x_breaks-.5

  # set y-axis
  y_limits <- c(min(df_data$value, na.rm=T) - 0.1*mean(df_data$value, na.rm=T),
                max(df_data$value, na.rm=T) + 0.1*mean(df_data$value, na.rm=T))

  ## set shaded rectangles breaks
  df_rectangles <- tibble::tibble(xmin=seq(x_limits[1], x_limits[2], by=2),
                                  xmax=seq(x_limits[1], x_limits[2], by=2)+1,
                                  ymin=y_limits[1], ymax=y_limits[2])

  # plot data
 
  p <-  ggplot2::ggplot() +
    # plot shaded rectangles
    ggplot2::geom_rect(data=df_rectangles,
                       mapping=ggplot2::aes(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax),
                       fill="gray90", alpha=0.8) +
    # plot data - line
    ggplot2::geom_line(data=df_data,
                       mapping=ggplot2::aes(x=year_dec, y=value, col = group),
                        size=.5) +
    # plot data - dots
    ggplot2::geom_point(data=df_data,
                        mapping=ggplot2::aes(x=year_dec, y=value, col = group),
                        size=1) +
    # set coordinates system and axes
    ggplot2::coord_cartesian() +
    ggplot2::scale_x_continuous(name="Year", limits=x_limits, breaks=x_breaks, labels=x_labels, expand=c(0,0)) +
    ggplot2::scale_y_continuous(name="", limits=y_limits, expand=c(0,0))

  # customize theme
  p <- p +
    ggplot2::theme_bw() +
    ggplot2::ggtitle(paste(group, variable,  sep=" : " )) +
    ggplot2::theme(
      text=ggplot2::element_text(size=8),
      axis.text.x=ggplot2::element_text(colour="black", angle=90, hjust=0.5, vjust=0.5),
      plot.title=ggplot2::element_text(colour="black", hjust=0, vjust=0, size=8),
      panel.grid.major=ggplot2::element_blank(),
      panel.border=ggplot2::element_rect(size=0.25, colour="black"),
      plot.margin=grid::unit(c(0.1,0.1,0.1,0.1), "cm"))

print(p)
## Warning: Removed 1 rows containing missing values (geom_rect).
## Warning: Removed 26 row(s) containing missing values (geom_path).
## Warning: Removed 6060 rows containing missing values (geom_point).

gslea

gslea was a package developed to support ecosystem approach research in the Gulf Region. It contains a plotting function EA.plot.f() which can be replicated using azmpdata.

Note these plots may appear very small in the notebook format.

dat <- get('Derived_Annual_Stations')

  actual_EARs <- unique(dat$station) # get regions to plot 
  dat_only <- dat[,!names(dat) %in% c('station', 'year', 'cruiseNumber', 'longitude', 'latitude', 'pressure')] # isolate data variables to plot (not metadata)
  no_plots <- length(dat_only)*length(actual_EARs) # calculate number of plots ot be displayed
  # set par info based on number of plots (max 25 per page)
  if(no_plots > 25) {par(mfcol = c(5, 5), mar = c(1.3,2,3.2,1), omi = c(.1,.1,.1,.1), ask = T)}
  if(no_plots <= 25){par(mfcol = c(length(dat_only), length(actual_EARs)), mar = c(1.3,2,3.2,1), omi = c(.1,.1,.1,.1))}
  
  counter <- 1
  for(i in actual_EARs){ # loop through regions
    ear_dat <- dat[dat$station == i,]
    for(ii in 1:length(dat_only)){ # loop by variables
      var_dat <- data.frame('value' = ear_dat[[names(dat_only)[[ii]]]], 'station' = ear_dat$station, 'year' = ear_dat$year) # get only one variable for one region
      if(!is.na(diff(range(var_dat$value)))){ # if all values are NA skip over plotting
        # plot
      if(nrow(var_dat) < 1) plot(0, 
                                 xlab = "", ylab = "", 
                                 xaxt = "n", yaxt = "n",
                                 main = paste("Station",i,names(dat_only)[[ii]]))
      if(nrow(var_dat) > 0) plot(var_dat$year, var_dat$value, 
                                 xlab = "", ylab = "", 
                                 main = paste("Station",i,names(dat_only)[[ii]]))
      }
    }
    counter <- counter+1
  }
  # set par info
  par(mfcol = c(1,1), omi = c(0,0,0,0), mar = c(5.1, 4.1, 4.1, 2.1), ask = F)

Conclusion

There are many varied plotting methods which can be used once azmpdata is loaded. We hope these examples help you to explore the possibilities. For more help on plotting please use the resources below: